Convergence of a Second-order Energy-decaying Method for the Viscous Rotating Shallow Water Equation
نویسندگان
چکیده
An implicit energy-decaying modified Crank--Nicolson time-stepping method is constructed for the viscous rotating shallow water equation on plane. Existence, uniqueness, and convergence of semidiscrete solutions are proved by using Schaefer's fixed point theorem $H^2$ estimates discretized hyperbolic--parabolic system. For practical computation, further in space, resulting a fully discrete finite element scheme. A fixed-point iterative proposed solving nonlinear algebraic The numerical results show that requires only few iterations to achieve desired accuracy, with second-order time, preserves energy decay well.
منابع مشابه
Cauchy problem for viscous rotating shallow water equations
We consider the Cacuhy problem for a viscous compressible rotating shallow water system with a third-order surface-tension term involved, derived recently in the modelling of motions for shallow water with free surface in a rotating sub-domain [18]. The global existence of the solution in the space of Besov type is shown for initial data close to a constant equilibrium state away from the vacuu...
متن کاملSchwarz Waveform Relaxation Method for the Viscous Shallow Water Equations
We are interested in solving time dependent problems using domain decomposition method. In the classical methods, one discretizes first the time dimension and then one solves a sequence of steady problems by a domain decomposition method. In this paper, we study a Schwarz Waveform Relaxation method which treats directly the time dependent problem. We propose algorithms for the viscous Shallow W...
متن کاملStability and Convergence of a Second Order Mixed Finite Element Method for the Cahn-Hilliard Equation
In this paper we devise and analyze an unconditionally stable, second-order-in-time numerical scheme for the Cahn-Hilliard equation in two and three space dimensions. We prove that our two-step scheme is unconditionally energy stable and unconditionally uniquely solvable. Furthermore, we show that the discrete phase variable is bounded in L∞ (0, T ;L∞) and the discrete chemical potential is bou...
متن کاملSpace-time Discontinuous Galerkin Method for Rotating Shallow Water Flows
In the present work, we analyze the rotating shallow water equations including bottom topography using a space-time discontinuous Galerkin finite element method. The method results in non-linear equations per element, which are solved locally by establishing the element communication with a numerical HLLC flux. To deal with spurious oscillations around discontinuities, we employ a stabilization...
متن کاملA RESEARCH NOTE ON THE SECOND ORDER DIFFERENTIAL EQUATION
Let U(t, ) be solution of the Dirichlet problem y''+( t-q(t))y= 0 - 1 t l y(-l)= 0 = y(x), with variabIe t on (-1, x), for fixed x, which satisfies the initial condition U(-1, )=0 , (-1, )=1. In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigen values has been investigated . Furthermore, the leading term of the asymptotic formula for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 2021
ISSN: ['0036-1429', '1095-7170']
DOI: https://doi.org/10.1137/20m1328051